傅里叶变换 拉普拉斯变换 Z变换
定义 (t换为k,jω换为ejωe^j\omega得DTFT)
正变换 F(jω)=f(t)ejωtdtF(j\omega)=\int_{-\infty}^{\infty}f(t)e^{-j{\omega}t}dt F(s)=f(t)estdtF(s)=\int_{-\infty}^{\infty}f(t)e^{-st}dt F(z)=k=f(k)zkF(z)=\sum_{k=-\infty}^{\infty}f(k)z^{-k}
反变换 f(t)=12πF(jω)ejωtdωf(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega)e^{-j{\omega}t}d\omega f(t)=12πjσσ+F(s)estdsf(t)=\frac{1}{2{\pi}j}\int_{\sigma-\infty}^{\sigma+\infty}F(s)e^{-st}ds
性质
线性
延时特性 f(tt0)F(jω)ejωt0f(t-t_0){\leftrightarrow}F(j\omega)e^{-j{\omega}t_0} f(tt0)F(s)est0f(t-t_0){\leftrightarrow}F(s)e^{-st_0} 增序:f(k+n)zn[F(z)i=0n1zif(i)]f(k+n){\leftrightarrow}z^n[F(z)-\sum_{i=0}^{n-1}z^{-i}f(i)]
移频特性 f(t)ejωctF[j(ωωc)]f(t)e^{j\omega_ct}{\leftrightarrow}F[j(\omega-\omega_c)] f(t)es0tF(ss0)]f(t)e^{s_0t}{\leftrightarrow}F(s-s_0)] 减序:f(kn)zn+1[F(z)+i=1nzif(i)]f(k-n){\leftrightarrow}z^{-n+1}[F(z)+\sum_{i=-1}^{-n}z^{-i}f(i)]
尺度变换 f(at)1aF(jωa)f(at)\leftrightarrow\frac{1}{\|a\|}F(j\frac{\omega}{a}) f(at)1aF(sa)f(at){\leftrightarrow}\frac{1}{\|a\|}F(\frac{s}{a}) akf(k)F(za)a^kf(k){\leftrightarrow}F(\frac{z}{a})
奇偶虚实性
对称特性 f(t)F(jω)F(jt)2πf(ω)f(t){\leftrightarrow}F(j\omega){\Longleftrightarrow}F(jt){\leftrightarrow}2{\pi}f(-\omega) f(t)F(s)F(t)2πjf(s)f(t){\leftrightarrow}F(s){\Longleftrightarrow}F(t){\leftrightarrow}2{\pi}jf(-s)
时域微分 ddtf(t)jωF(jω)\frac{d}{dt}f(t){\leftrightarrow}j{\omega}F(j\omega) ddtf(t)sF(s)f(0)\frac{d}{dt}f(t){\leftrightarrow}sF(s)-f(0^-)
时域积分 tf(τ)dτπF(0)δ(ω)+1jωF(jω)\int_{-\infty}^{t}f(\tau)d\tau{\leftrightarrow}{\pi}F(0)\delta(\omega)+\frac{1}{j\omega}F(j\omega) 0tf(τ)dτF(s)s\int_{0^-}^{t}f(\tau)d\tau{\leftrightarrow}\frac{F(s)}{s}
频域微分 jtf(t)ddωF(jω)-jtf(t)\leftrightarrow\frac{d}{d\omega}F(j\omega) tf(t)ddsF(s)tf(t)\leftrightarrow-\frac{d}{ds}F(s) kf(k)zddzF(z)kf(k)\leftrightarrow-z\frac{d}{dz}F(z)
频域积分 πf(0)δ(t)f(t)jtωF(jΩ)dΩ{\pi}f(0)\delta(t)-\frac{f(t)}{jt}\leftrightarrow\int_{-\infty}^{\omega}F(j\Omega)d\Omega f(t)tsF(p)dp\frac{f(t)}{t}\leftrightarrow\int_{s}^{\infty}F(p)dp
卷积定理 {f1(t)f2(t)F1(jω)F2(jω)f1(t)f2(t)12πF1(jω)F2(jω)\begin{cases}f_1(t)*f_2(t){\leftrightarrow}F_1(j\omega)F_2(j\omega)\\f_1(t)f_2(t){\leftrightarrow}\frac{1}{2\pi}F_1(j\omega)*F_2(j\omega)\end{cases} {f1(t)f2(t)F1(s)F2(s)f1(t)f2(t)12jπF1(s)F2(s)\begin{cases}f_1(t)*f_2(t){\leftrightarrow}F_1(s)F_2(s)\\f_1(t)f_2(t){\leftrightarrow}\frac{1}{2j\pi}F_1(s)*F_2(s)\end{cases} f1(k)f2(k)F1(z)F2(z)f_1(k)*f_2(k){\leftrightarrow}F_1(z)F_2(z)
初值定理 f(0+)=limt0+f(t)=limssF(s)f(0^+)=\lim_{t\rightarrow0^+}f(t)=\lim_{s\rightarrow\infty}sF(s) f(0)=limzF(z)f(0)=\lim_{z\rightarrow\infty}F(z)
终值定理 f()=limtf(t)=lims0sF(s)f(\infty)=\lim_{t\rightarrow\infty}f(t)=\lim_{s\rightarrow0}sF(s) f()=limz1(z1)F(z)f(\infty)=\lim_{z\rightarrow1}(z-1)F(z)
常用变换 傅里叶变换 拉普拉斯变换 Z变换
鼠:δ(t)\delta(t) 1 11
牛:CC 2πCδ(ω)2{\pi}C\delta(\omega)
虎:ϵ(t)\epsilon(t) πδ(ω)+1jω{\pi}\delta(\omega)+\frac{1}{j\omega} 1s\frac{1}{s} zz1\frac{z}{z-1}
兔:sgn(t)sgn(t) 2jω\frac{2}{j\omega}
龙:ejωcte^{j\omega_ct} 2πδ(ωωc)2{\pi}\delta(\omega-\omega_c)
蛇:cosωctcos\omega_ct π[δ(ω+ωc)+δ(ωωc)]{\pi}[\delta(\omega+\omega_c)+\delta(\omega-\omega_c)] cosωctϵ(t)ss2+ωc2cos\omega_ct\epsilon(t){\leftrightarrow}\frac{s}{s^2+\omega_c^2} cosβkTϵ(k)z(zcosβT)z22zcosβT+1cos{\beta}kT\epsilon(k)\leftrightarrow\frac{z(z-cos{\beta}T)}{z^2-2zcos{\beta}T+1}
马:sinωctsin\omega_ct jπ[δ(ω+ωc)δ(ωωc)]j{\pi}[\delta(\omega+\omega_c)-\delta(\omega-\omega_c)] sinωctϵ(t)ωcs2+ωc2sin\omega_ct\epsilon(t){\leftrightarrow}\frac{\omega_c}{s^2+\omega_c^2} sinβkTϵ(k)zsinβTz22zcosβT+1sin{\beta}kT\epsilon(k)\leftrightarrow\frac{zsin{\beta}T}{z^2-2zcos{\beta}T+1}
羊:12n=AnejnΩt\frac{1}{2}\sum_{n=-\infty}^{\infty}A_ne^{jn{\Omega}t} πn=Anδ(ωnΩ)\pi\sum_{n=-\infty}^{\infty}A_n\delta(\omega-n\Omega)
猴:δT(t)=n=δ(tnT)\delta_T(t)=\sum_{n=-\infty}^{\infty}\delta(t-nT) n=ejnTω=ΩδΩ(ω),Ω=2πT\sum^\infty_{n=-\infty}e^{jnT\omega}=\Omega\delta_\Omega(\omega),\Omega=\frac{2\pi}{T}
鸡:A(1tτ),tτ2A(1-\frac{\|t\|}{\tau}),\|t\|\leq\frac{\tau}{2} AτSa2(τ2ω)A{\tau}Sa^2(\frac{\tau}{2}\omega)
狗:AGτ(t)=A,tτ2AG_{\tau}(t)=A,\|t\|\leq\frac{\tau}{2} AτSa(τ2ω)A{\tau}Sa(\frac{\tau}{2}\omega)
猪:eαtϵ(t),α>0e^{-{\alpha}t}\epsilon(t),\alpha>0 1α+jω\frac{1}{\alpha+j\omega} 1s+α\frac{1}{s+\alpha}
eαtϵ(t),α>0e^{-{\alpha}\|t\|}\epsilon(t),\alpha>0 2αα2+ω2\frac{2\alpha}{\alpha^2+\omega^2}
eαttnϵ(t)e^{\alpha{t}}t^n\epsilon(t) n!(sα)n+1\frac{n!}{(s-\alpha)^{n+1}}
δ(n)(t)\delta^{(n)}(t) sns^n
vkϵ(k)v^k\epsilon(k) zzv\frac{z}{z-v}
kvk1ϵ(k)kv^{k-1}\epsilon(k) z(zv)2\frac{z}{(z-v)^2}
Cknvknϵ(k)C^n_kv^{k-n}\epsilon(k) z(zv)n+1\frac{z}{(z-v)^{n+1}}